Herry, C. & Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).
Google Scholar
Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).
Google Scholar
Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).
Google Scholar
Malezieux, M., Klein, A. S. & Gogolla, N. Neural circuits for emotion. Annu. Rev. Neurosci. 46, 211–231 (2023).
Google Scholar
LeDoux, J. E. What emotions might be like in other animals. Curr. Biol. 31, R824–R829 (2021).
Google Scholar
Barrett, L. F., Mesquita, B., Ochsner, K. N. & Gross, J. J. The experience of emotion. Annu. Rev. Psychol. 58, 373–403 (2007).
Google Scholar
Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).
Google Scholar
LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269–282 (2018).
Google Scholar
Poon, C.-S. & Merfeld, D. M. Internal models: the state of the art. J. Neural Eng. 2, E01 (2005).
Google Scholar
Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).
Google Scholar
Balleine, B. W., Dezfouli, A., Ito, M. & Doya, K. Hierarchical control of goal-directed action in the cortical–basal ganglia network. Curr. Opin. Behav. Sci. 5, 1–7 (2015).
Google Scholar
Wikenheiser, A. M. & Schoenbaum, G. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat. Rev. Neurosci. 17, 513–523 (2016).
Google Scholar
Imamizu, H. & Kawato, M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J. Neurosci. 28, 10751–10765 (2008).
Google Scholar
Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).
Google Scholar
Sadacca, B. F. et al. Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task. eLife 7, e30373 (2018).
Google Scholar
Hart, E. E., Gardner, M. P. H. & Schoenbaum, G. Anterior cingulate neurons signal neutral cue pairings during sensory preconditioning. Curr. Biol. 32, 725–732.e3 (2022).
Google Scholar
Miyashita, Y. Cognitive memory: cellular and network machineries and their top-down control. Science 306, 435–440 (2004).
Google Scholar
Holmes, N. M., Parkes, S. L., Killcross, A. S. & Westbrook, R. F. The basolateral amygdala is critical for learning about neutral stimuli in the presence of danger, and the perirhinal cortex is critical in the absence of danger. J. Neurosci. 33, 13112–13125 (2013).
Google Scholar
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
Google Scholar
Baeg, E. H. et al. Dynamics of population code for working memory in the prefrontal cortex. Neuron 40, 177–188 (2003).
Google Scholar
Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).
Google Scholar
Euston, D. R., Gruber, A. J. & McNaughton, B. L. The role of medial prefrontal cortex in memory and decision making. Neuron 76, 1057–1070 (2012).
Google Scholar
Morrissey, M. D., Insel, N. & Takehara-Nishiuchi, K. Generalizable knowledge outweighs incidental details in prefrontal ensemble code over time. eLife 6, e22177 (2017).
Google Scholar
Simon, J., Rudebeck, P. H. & Rich, E. L. From affective to cognitive processing: functional organization of the medial frontal cortex. Int. Rev. Neurobiol. 158, 1–28 (2021).
Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).
Google Scholar
Klein-Flügge, M. C., Wittmann, M. K., Shpektor, A., Jensen, D. E. A. & Rushworth, M. F. S. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms. Nat. Commun. 10, 4835 (2019).
Google Scholar
Bongioanni, A. et al. Activation and disruption of a neural mechanism for novel choice in monkeys. Nature 591, 270–274 (2021).
Google Scholar
Gao, L. et al. Single-neuron projectome of mouse prefrontal cortex. Nat. Neurosci. 25, 515–529 (2022).
Google Scholar
Takehara-Nishiuchi, K. Flexibility of memory for future-oriented cognition. Curr. Opin. Neurobiol. 76, 102622 (2022).
Google Scholar
Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014).
Google Scholar
Laufer, O., Israeli, D. & Paz, R. Behavioral and neural mechanisms of overgeneralization in anxiety. Curr. Biol. 26, 713–722 (2016).
Google Scholar
Salzman, C. D. & Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202 (2010).
Google Scholar
Likhtik, E., Stujenske, J. M., Topiwala, M. A., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).
Google Scholar
Burgos-Robles, A., Vidal-Gonzalez, I. & Quirk, G. J. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 29, 8474–8482 (2009).
Google Scholar
Jercog, D. et al. Dynamical prefrontal population coding during defensive behaviours. Nature 595, 690–694 (2021).
Google Scholar
Cummings, K. A. & Clem, R. L. Prefrontal somatostatin interneurons encode fear memory. Nat. Neurosci. 23, 61–74 (2020).
Google Scholar
Agetsuma, M. et al. Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation. Nat. Commun. 14, 5996 (2023).
Google Scholar
Do-Monte, F. H., Quiñones-Laracuente, K. & Quirk, G. J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).
Google Scholar
Dixsaut, L. & Gräff, J. The medial prefrontal cortex and fear memory: dynamics, connectivity, and engrams. Int. J. Mol. Sci. 22, 12113 (2021).
Google Scholar
Rawson, T., O’Kane, M. & Talk, A. The medial prefrontal cortex and memory of cue location in the rat. Neurobiol. Learn. Mem. 93, 132–136 (2010).
Google Scholar
Likhtik, E. & Paz, R. Amygdala–prefrontal interactions in (mal)adaptive learning. Trends Neurosci. 38, 158–166 (2015).
Google Scholar
Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 44, 550–563 (2021).
Google Scholar
Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).
Google Scholar
Madarasz, T. J. et al. Evaluation of ambiguous associations in the amygdala by learning the structure of the environment. Nat. Neurosci. 19, 965–972 (2016).
Google Scholar
Saez, A., Rigotti, M., Ostojic, S., Fusi, S. & Salzman, C. D. Abstract context representations in primate amygdala and prefrontal cortex. Neuron 87, 869–881 (2015).
Google Scholar
Kyriazi, P., Headley, D. B. & Paré, D. Different multidimensional representations across the amygdalo-prefrontal network during an approach-avoidance task. Neuron 107, 717–730.e5 (2020).
Google Scholar
Holmes, N. M., Wong, F. S., Bouchekioua, Y. & Westbrook, R. F. Not “either-or” but “which-when”: a review of the evidence for integration in sensory preconditioning. Neurosci. Biobehav. Rev. 132, 1197–1204 (2022).
Google Scholar
Iordanova, M. D., Burnett, D. J., Aggleton, J. P., Good, M. & Honey, R. C. The role of the hippocampus in mnemonic integration and retrieval: complementary evidence from lesion and inactivation studies. Eur. J. Neurosci. 30, 2177–2189 (2009).
Google Scholar
Bornstein, A. M. & Daw, N. D. Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans. PLoS Comput. Biol. 9, e1003387 (2013).
Google Scholar
Barron, H. C. et al. Neuronal computation underlying inferential reasoning in humans and mice. Cell 183, 228–243.e21 (2020).
Google Scholar
Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).
Google Scholar
Jun, H. et al. Prefrontal and lateral entorhinal neurons co-dependently learn item–outcome rules. Nature 633, 864–871 (2024).
Google Scholar
Rizley, R. C. & Rescorla, R. A. Associations in second-order conditioning and sensory preconditioning. J. Comp. Physiol. Psychol. 81, 1–11 (1972).
Google Scholar
Gostolupce, D., Lay, B. P. P., Maes, E. J. P. & Iordanova, M. D. Understanding associative learning through higher-order conditioning. Front. Behav. Neurosci. 16, 845616 (2022).
Google Scholar
Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).
Google Scholar
Courtin, J. et al. A neuronal mechanism for motivational control of behavior. Science 375, eabg7277 (2022).
Google Scholar
Wheeler, D. S., Sherwood, A. & Holland, P. C. Excitatory and inhibitory learning with absent stimuli. J. Exp. Psychol. Anim. Behav. Process. 34, 247–255 (2008).
Google Scholar
Hall, G. Learning about associatively activated stimulus representations: implications for acquired equivalence and perceptual learning. Anim. Learn. Behav. 24, 233–255 (1996).
Google Scholar
Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).
Google Scholar
Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).
Google Scholar
Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).
Google Scholar
Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).
Google Scholar
Zaki, Y. et al. Offline ensemble co-reactivation links memories across days. Nature 637, 145–155 (2025).
Google Scholar
Mocle, A. J. et al. Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron 112, 1487–1497.e6 (2024).
Google Scholar
Johansen, J. P. et al. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc. Natl Acad. Sci. USA 111, E5584–E5592 (2014).
Google Scholar
Ozawa, T. et al. A feedback neural circuit for calibrating aversive memory strength. Nat. Neurosci. 20, 90–97 (2017).
Google Scholar
Holmes, N. M., Fam, J. P., Clemens, K. J., Laurent, V. & Westbrook, R. F. The neural substrates of higher-order conditioning: a review. Neurosci. Biobehav. Rev. 138, 104687 (2022).
Google Scholar
Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).
Google Scholar
Aly, M. H., Abdou, K., Okubo-Suzuki, R., Nomoto, M. & Inokuchi, K. Selective engram coreactivation in idling brain inspires implicit learning. Proc. Natl Acad. Sci. USA 119, e2201578119 (2022).
Google Scholar
Ormond, J., Serka, S. A. & Johansen, J. P. Enhanced reactivation of remapping place cells during aversive learning. J. Neurosci. 43, 2153–2167 (2023).
Google Scholar
Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).
Google Scholar
Maren, S. & Holmes, A. Stress and fear extinction. Neuropsychopharmacology 41, 58–79 (2016).
Google Scholar
Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).
Google Scholar
Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011).
Google Scholar
Branco, T. & Redgrave, P. The neural basis of escape behavior in vertebrates. Annu. Rev. Neurosci. 43, 417–439 (2020).
Google Scholar
Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).
Google Scholar
LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry 173, 1083–1093 (2016).
Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, 2007).
Gründemann, J. et al. Amygdala ensembles encode behavioral states. Science 364, eaav8736 (2019).
Google Scholar