Zhu, L., Li, N. & Childs, P. R. N. Light-weighting in aerospace component and system design. Propuls. Power Res. 7, 103–119 (2018).
Google Scholar
Zhang, W. & Xu, J. Advanced lightweight materials for automobiles: a review. Mater. Des. 221, 110994 (2022).
Google Scholar
Yildiz, T. Design and analysis of a lightweight composite shipping container made of carbon fiber laminates. Logistics 3, 18 (2019).
Google Scholar
Zhang, J., Chevali, V. S., Wang, H. & Wang, C.-H. Current status of carbon fibre and carbon fibre composites recycling. Compos. B Eng. 193, 108053 (2020).
Google Scholar
Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Ass. 16, 268–282 (2011).
Google Scholar
Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).
Google Scholar
Prenzel, T. M. et al. Bringing light into the dark—overview of environmental impacts of carbon fiber production and potential levers for reduction. Polymers 16, 12 (2024).
Liu, P., Meng, F. & Barlow, C. Y. Wind turbine blade end-of-life options: an economic comparison. Resour. Conserv. Recycl. 180, 106202 (2022).
Google Scholar
Winrow, M. When wind turbine blades get old what’s next? BBC News (12 March 2024); www.bbc.com/news/business-68225891.
Kim, M. Turbine blades have piled up in landfills. A solution may be coming. The New York Times (30 August 2024); www.nytimes.com/2024/08/30/climate/wind-turbine-recycling-climate.html.
Patel, P. Wind turbine blade recycling picks up speed. Chemical & Engineering News 102 (3 October 2024); https://cen.acs.org/environment/recycling/Wind-turbine-blade-recycling-picks/102/i31.
Isa, A. et al. A review on recycling of carbon fibres: Methods to reinforce and expected fibre composite degradations. Materials 15, 4991 (2022).
Google Scholar
Wang, C. et al. Synthesis, characterization, and recycling of bio-derivable polyester covalently adaptable networks for industrial composite applications. Matter 7, 550–568 (2024).
Google Scholar
Karp, E. M. et al. Renewable acrylonitrile production. Science 358, 1307–1310 (2017).
Google Scholar
Pickering, S. J. Recycling technologies for thermoset composite materials—current status. Compos. A Appl. Sci. Manuf. 37, 1206–1215 (2006).
Google Scholar
Wu, X. et al. Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis. Science 384, eadj9989 (2024).
Google Scholar
Clarke, R. W. et al. Manufacture and testing of biomass-derivable thermosets for wind blade recycling. Science 385, 854–860 (2024).
Google Scholar
Salas, A. et al. Towards recycling of waste carbon fiber: strength, morphology and structural features of recovered carbon fibers. Waste Manage. 165, 59–69 (2023).
Google Scholar
Naqvi, S. R. et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018).
Google Scholar
Pérez, R. L. et al. Recycling thermoset epoxy resin using alkyl-methyl-imidazolium ionic liquids as green solvents. ACS Appl. Polym. Mater. 3, 5588–5595 (2021).
Google Scholar
Oliveux, G., Dandy, L. O. & Leeke, G. A. Degradation of a model epoxy resin by solvolysis routes. Polym. Degrad. Stab. 118, 96–103 (2015).
Google Scholar
Ballout, W. et al. High performance recycled CFRP composites based on reused carbon fabrics through sustainable mild solvolysis route. Sci. Rep. 12, 5928 (2022).
Google Scholar
Wang, Y. et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond. ACS Sustain. Chem. Eng. 3, 3332–3337 (2015).
Google Scholar
Xing, M. et al. Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology. Compos. B Eng. 224, 109230 (2021).
Google Scholar
Huan, X. et al. Phosphoric acid derived efficient reclaimation of carbon fibre for re-manufacturing high performance epoxy composites reinforced by highly-aligned mat with optimized layup. Compos. B Eng. 211, 108656 (2021).
Google Scholar
Kim, Y. N. et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic. Compos. Sci. Technol. 173, 66–72 (2019).
Google Scholar
Lo, J. N., Nutt, S. R. & Williams, T. J. Recycling benzoxazine–epoxy composites via catalytic oxidation. ACS Sustain. Chem. Eng. 6, 7227–7231 (2018).
Google Scholar
Ma, Y. & Nutt, S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. Polym. Degrad. Stab. 153, 307–317 (2018).
Google Scholar
Navarro, C. A. et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites. Top. Catal. 61, 704–709 (2018).
Google Scholar
Ahrens, A. et al. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 617, 730–737 (2023).
Google Scholar
DiPucchio, R. C., Stevenson, K. R., Lahive, C. W., Michener, W. E. & Beckham, G. T. Base-mediated depolymerization of amine-cured epoxy resins. ACS Sustain. Chem. Eng. 11, 16946–16954 (2023).
Google Scholar
Sun, H. et al. Solvent–base mismatch enables the deconstruction of epoxy polymers and bisphenol A recovery. Green Chem. 26, 815–824 (2024).
Lim, Y. J., Yu, Z., Cherepakhin, V., Williams, T. J. & Nutt, S. R. Fiber and monomer recovery from an amine-cured epoxy composite using molten NaOH–KOH. Green Chem. 27, 2184–2188 (2025).
Shetty, S., Pinkard, B. R. & Novosselov, I. V. Recycling of carbon fiber reinforced polymers in a subcritical acetic acid solution. Heliyon 8, e12242 (2022).
Google Scholar
Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry 155–244 (Wiley-VCH, 2005).
Lei, Y.-Q., He, Z.-X., Luo, Y., Lu, S.-N. & Li, C.-J. Chemical degradation of bisphenol A diglycidyl ether/methyl tetrahydrophthalic anhydride networks by p-toluenesulfonic-acetic anhydride. Polym. Degrad. Stab. 123, 115–120 (2016).
Google Scholar
Huang, J., He, C., Li, X., Pan, G. & Tong, H. Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate. Waste Manage. 71, 181–191 (2018).
Google Scholar
Guadagno, L. et al. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 4, 15474–15488 (2014).
Google Scholar
Hedrick, J. L., Yilgör, I., Wilkes, G. L. & McGrath, J. E. Chemical modification of matrix resin networks with engineering thermoplastics. Polym. Bull. 13, 201–208 (1985).
Google Scholar
Balaji, A. B., Rudd, C. & Liu, X. Recycled carbon fibers (rCF) in automobiles: towards circular economy. Mater. Circ. Econ. 2, 4 (2020).
Google Scholar
Satheese, M. & Pugazhvadivu, M. Flexural strength behavior of Al 6061 matrix reinforced with SiC and coconut shell ash. SSRG Int. J. Mech. Eng. 12–15 (2018).
Overview of materials for stainless steel. MatWeb www.matweb.com/search/DataSheet.aspx?MatGUID=71396e57ff5940b791ece120e4d563e0&ckck=1 (2025).
Nicholson, S. R. et al. The critical role of process analysis in chemical recycling and upcycling of waste plastics. Annu. Rev. Chem. Biomol. Eng. 13, 301–324 (2022).
Google Scholar
Nixon, K. D. et al. Analyses of circular solutions for advanced plastics waste recycling. Nat. Chem. Eng. 1, 615–626 (2024).
Google Scholar
Martin, R. W., Sabato, A., Schoenberg, A., Giles, R. H. & Niezrecki, C. Comparison of nondestructive testing techniques for the inspection of wind turbine blades’ spar caps. Wind Energy 21, 980–996 (2018).
Google Scholar
Das, M., Chacko, R. & Varughese, S. An efficient method of recycling of CFRP waste using peracetic acid. ACS Sustain. Chem. Eng. 6, 1564–1571 (2018).
Google Scholar
Heidarian, P., Mokhtari, F., Naebe, M., Henderson, L. C. & Varley, R. J. Reclamation and reformatting of waste carbon fibers: A paradigm shift towards sustainable waste management. Resour. Conserv. Recycl. 203, 107465 (2024).
Google Scholar
Ghosh, T., Kim, H. C., De Kleine, R., Wallington, T. J. & Bakshi, B. R. Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: front subframe case study. Sustain. Mater. Technol. 28, e00263 (2021).
Google Scholar
Matrenichev, V., Lessa Belone, M. C., Palola, S., Laurikainen, P. & Sarlin, E. Resizing approach to increase the viability of recycled fibre-reinforced composites. Materials 13, 5773 (2020).
Ozdemir, T. et al. Carbon fiber composites recycling technology enabled by the TuFF technology. Recycling 9, 11 (2024).
Google Scholar
Yu, H., Potter, K. D. & Wisnom, M. R. A novel manufacturing method for aligned discontinuous fibre composites (high performance-discontinuous fibre). Compos. A Appl. Sci. Manuf. 65, 175–185 (2014).
Google Scholar